LAP: a Linearize and Project Method for Solving Inverse Problems with Coupled Variables
نویسندگان
چکیده
Many inverse problems involve two or more sets of variables that represent different physical quantities but are tightly coupled with each other. For example, image super-resolution requires joint estimation of image and motion parameters from noisy measurements. Exploiting this structure is key for efficiently solving large-scale problems to avoid, e.g., ill-conditioned optimization problems. In this paper, we present a new method called Linearize And Project (LAP) that offers a flexible framework for solving inverse problems with coupled variables. LAP is most promising for cases when the subproblem corresponding to one of the variables is considerably easier to solve than the other. LAP is based on a Gauss-Newton method, and thus after linearizing the residual, it eliminates one block of variables through projection. Due to the linearization, the block can be chosen freely and can represent quadratic as well as nonlinear variables. Further, LAP supports direct, iterative, and hybrid regularization as well as constraints. Therefore LAP is attractive, e.g., for ill-posed imaging problems. These traits differentiate LAP from common alternatives for this type of problems such as variable projection (VarPro) and block coordinate descent (BCD). Our numerical experiments compare the performance of LAP to BCD and VarPro using four coupled problems with one quadratic and one nonlinear set of variables.
منابع مشابه
A STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT
The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...
متن کاملA numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملA Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations
In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملRBF-Chebychev direct method for solving variational problems
This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.09992 شماره
صفحات -
تاریخ انتشار 2017